Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Luiz Everson da Silva,^{a,b} Antonio Carlos Joussef,^a Sabine Foro^b and Boris Schmidt^b*

^aDepartamento de Química–UFSC, 88040-900 Florianópolis, SC, Brazil, and ^bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean $\sigma(\text{C}-\text{C}) = 0.011 \text{ Å}$ R factor = 0.045 wR factor = 0.103 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

There are two independent molecules in the asymmetric unit of the title compound, $C_{13}H_8Br_2N_2O_2S_2$. Intermolecular C— H···O hydrogen bonds are observed, linking each non-planar molecule to a symmetry-equivalent molecule.

4,5-Dibromo-N-(8-quinolyl)thiophene-2-sulfonamide

Received 17 November 2005 Accepted 13 December 2005 Online 21 December 2005

Comment

Zinc fluorophores have recently been attracting much interest in biological and environmental applications. Following carbonic anhydrase-based biosensors with fluorescent aromatic sulfonamides, a chemosensor, Zinquin, is now extensively used to study the role of intracellular Zn^{2+} in cellular biology (Kimura & Koike, 1998). Our interest in such metal chelators as potential agents for neuroprotection in Alzheimer's disease (Zheng *et al.*, 2005) led to the X-ray study of the title compound, (I).

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

The asymmetric unit of (I), showing the atom labelling and with displacement ellipsoids drawn at the 50% probability level.

organic papers

The quinoline ring system of each of the two independent molecules in the asymmetric unit (Fig. 1) is nearly planar. The torsion angles C1-N1-S1-C10 and C14-N3-S3-C23 are 59.7 (6) and 60.3 (7)°, respectively. Molecules of the title compound are linked by intermolecular $C-H\cdots$ O hydrogen bonds to form a chain, as shown in Fig. 2 and detailed in Table 1. The contributions of the two inversion twin components refined to 0.23 (1) and 0.77 (1).

Experimental

The title compound, (I), was prepared according to the literature procedure of Xue *et al.* (2000). Suitable crystals were obtained by recrystallization from methanol–dichloromethane (1:1 v/v).

Crystal data

$C_{13}H_8Br_2N_2O_2S_2$	Mo $K\alpha$ radiation		
$M_r = 448.15$	Cell parameters from 2740		
Orthorhombic, Pna2 ₁	reflections		
a = 28.318 (2) Å	$\theta = 2.8 - 18.0^{\circ}$		
b = 7.0471 (5) Å	$\mu = 5.66 \text{ mm}^{-1}$		
c = 15.094 (1) Å	T = 299 (2) K		
V = 3012.2 (4) Å ³	Rod, pink		
Z = 8	$0.28 \times 0.10 \times 0.08 \text{ mm}$		
$D_x = 1.976 \text{ Mg m}^{-3}$			
Data collection			
Oxford Diffraction Xcalibur	20485 measured reflections		
diffractometer with Sapphire	6068 independent reflections		
CCD detector	3494 reflections with $I > 2\sigma(I)$		
ω and φ scans	$R_{\rm int} = 0.063$		
Absorption correction: analytical	$\theta_{\rm max} = 26.4^{\circ}$		
(CrysAlis RED; Oxford	$h = -35 \rightarrow 34$		
Diffraction, 2004)	$k = -5 \rightarrow 8$		
$T_{\min} = 0.344, \ T_{\max} = 0.760$	$l = -18 \rightarrow 18$		
Refinement			
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0499P)^2]$		
$R[F^2 > 2\sigma(F^2)] = 0.045$	where $P = (F_0^2 + 2F_c^2)/3$		
$wR(F^2) = 0.103$	$(\Delta/\sigma)_{\rm max} = 0.022$		
S = 0.88	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$		
6068 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$		
380 parameters	Absolute structure: Flack (1983)		
H-atom parameters constrained	Flack parameter: 0.23 (1), with 2891		

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6···O1 ⁱ	0.93	2.51	3.215 (9)	133
C20−H20···O3 ⁱⁱ	0.93	2.60	3.253 (10)	127
		1	1 1	

Friedel pairs

Symmetry codes: (i) -x, -y + 1, $z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$.

The molecular packing of (I), with hydrogen bonds shown as dashed lines.

H atoms were positioned with idealized geometry using a riding model (C-H = 0.93 Å and N-H = 0.86 Å) and were refined with isotropic displacement parameters (set to 1.2 times U_{eq} of the parent atom).

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2004); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, for diffractometer time.

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kimura, E. & Koike, T. (1998). Chem. Soc. Rev. 27, 179-184.
- Oxford Diffraction (2003). CrysAlis CCD. Version 1.170.17. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Oxford Diffraction (2004). CrysAlis RED. Version 1.171.26. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Xue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montaldi, M. & Zaccheroni, N. (2000). *Tetrahedron*, 58, 4809–4815.
- Zheng, H., Weiner, L. M., Bar-Am, O., Epstejn, S. Cabantchik, Z. I., Warshawsky, A., Youdim, M. B. H. & Fridkin, M. (2005). *Bioorg. Med. Chem.* 13, 773–783.